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Abstract

Climate change is accelerating cryosphere degradation in mountainous regions, altering hydrological and geomorphological
dynamics in deglaciating catchments. Among cryospheric features, rock glaciers degrade more slowly than glaciers, providing
a sustained influence on water resources in alpine watersheds. This study investigates the role of a rock glacier interacting with
the Shar Shaw Taga River (Grizzly Creek) riverbed in the St. Elias Mountains (Yukon, Canada), using a unique multimethod
approach that integrates hydro-physicochemical and isotopic characterization, drone-based thermal infrared (TIR) imagery,
and visible time-lapse (TL) imagery. Results assess that rock glaciers, due to their geomorphic properties, can constrict
riverbeds and alluvial aquifers, and control shallow groundwater flow, leading to notable changes in channel structure and
groundwater discharge. These disruptions promote downstream cryo-hydrological processes by facilitating aufeis formation
and modifying the physicochemical properties of streamflow. Additional findings highlight the critical role of rock glaciers
and proglacial systems in connecting mountain cryosphere and deep groundwater systems, with consequent implications for

mountain hydrology and water resources.

1. Introduction

Climate change is profoundly transforming mountain regions, where the cryosphere plays a critical role in regulating water
resources essential for the sustainability of downstream ecosystems and communities. With rising global temperatures, high
mountain areas are experiencing accelerated deglaciation, characterized by glacial retreat and permafrost thaw (Hock et al.,
2019). These processes drive rapid geomorphological and hydrological reconfigurations in proglacial systems (Carrivick and

Heckmann, 2017). Understanding the impacts of cryosphere degradation on mountain hydrology and hydrogeology is essential
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for predicting future water availability in these regions. Recently, the connectivity between the cryosphere and groundwater
has been identified as a critical issue in mountain hydrology, directly influencing water resource sustainability under changing
climatic conditions (van Tiel et al., 2024).

In proglacial systems, riverbeds and outwash plains serve as critical hydrogeological components, sustaining baseflow and
aquatic habitats (Késer and Hunkeler, 2016; Miller et al., 2024). However, the recharge and discharge dynamics of alluvial
groundwater systems are intrinsically linked to upstream and adjacent cryospheric features (e.g., glaciers, seasonal snowpacks,
etc.; Miller et al., 2024), as evidenced by aufeis formation. Aufeis, or icings, are layered ice formations that develop in winter
when groundwater outflows persist under sub-zero temperatures for several months (Ensom et al., 2020). These formations
can occur due to upwellings of groundwater encountering impermeable permafrost (Terry et al., 2020), with channel
constriction further promoting their formation (Wainstein et al., 2014; Liu et al., 2021). In mountain environments, aufeis
formations are common in outwash plains and are generally supplied by groundwater and meltwater from surrounding
cryospheric sources (Chesnokova et al., 2020; Mallinson et al., 2019; Wainstein et al., 2014).

Among cryospheric features, rock glaciers degrade more slowly than glaciers, allowing them to exert a prolonged influence
on hydrological processes as glaciers retreat (Bolch and Marchenko, 2009; Harrison et al., 2021; Jones et al., 2021). Despite
growing recognition of their hydrological importance, rock glaciers remain understudied compared to glaciers, particularly
concerning their roles in deglaciating catchments (Jones et al., 2019). Rock glaciers are tongue-shaped landforms composed
of rocky debris and ice, which creep due to the plastic deformation of their frozen content. They are commonly found in high
mountain environments and occur in both discontinuous and continuous permafrost zones (Barsch, 1996). While existing
studies primarily focus on the internal hydrological behavior of rock glaciers, research addressing their broader catchment-
scale implications remains limited (Jones et al., 2019).

Rock glaciers have been shown to buffer surface waters throughout the year, sustaining baseflow during dry periods and
attenuating discharge response to intense precipitation events due to their internal structure (Bearzot et al., 2023; Reato et al.,
2022; Wagner et al., 2021). Their hydrological behaviour is closely tied to the distribution of frozen and liquid water within
them (Harrington et al., 2018; Wagner et al., 2016; Winkler et al., 2016). Unfrozen layers in summer can act as reservoirs and
conduits for water flow (Halla et al., 2021; Harrington et al., 2018; Navarro et al., 2023; Wagner et al., 2020). In addition to
liquid water, intact rock glaciers (i.e., containing frozen content) store significant volumes of solid water as interstitial or
massive ice (Chakravarthi et al., 2022; Halla et al., 2021; Jones et al., 2018; Wagner et al., 2021). However, internal ice melt
typically contributes only minimally to total rock glacier discharge (Arenson et al., 2022). In addition to modulating discharge,
rock glaciers influence downstream water quality by increasing solute concentrations (Colombo et al., 2018; Colombo et al.,
2019; Schreder et al., 2023; Engel et al., 2019; Wanner et al., 2023; Zarroca et al., 2021) and cooling stream temperatures
(Bearzot et al., 2023; Brighenti et al., 2019; Colombo et al., 2020). The physicochemical impact of rock glacier outflows is
particularly pronounced at the catchment scale when compared to catchments lacking glacial or periglacial landforms
(Brighenti et al., 2023; Clow et al., 2021; Del Siro et al., 2023; Gammons et al., 2021; Robinson et al., 2022).
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While much of the literature focuses on the downstream effects of rock glacier outflows (e.g., Brighenti et al., 2023; Robinson
et al., 2022; Wagner et al., 2016; Wagner et al., 2021), their influence on the hydrogeomorphology of riverbeds and outwash
plains remains understudied. Rock glaciers can advance, constrain, and dam riverbeds, potentially forming ponds, as reported
in High Asia (Blothe et al., 2019; Falatkova et al., 2020; Hewitt, 2014) and the Alps (Colombo et al., 2020). Furthermore,
topographic changes driven by glacial retreat and paraglacial processes can force channel confinement (Marren and Toomath,
2014). Climate change has intensified rock glacier movement (Delaloye et al., 2010; Kummert et al., 2019; PERMOS, 2019),
sometimes causing destabilization (Marcer et al., 2021) and channel disruption (Sorg et al., 2015). Additionally, sudden mass
movements, such as the catastrophic collapse of rock glacier lobes, have triggered debris flows with downstream geomorphic
impacts (Bodin et al., 2015; Scotti et al., 2017). The hydrological and geomorphic disturbances caused by advancing rock
glaciers in valley systems are particularly notable, given the critical role of riverbeds and outwash plains in sustaining water
resources. Despite recent studies (e.g., Falatkova et al., 2020; Wagner et al., 2021), research on the interactions between rock
glaciers, the adjacent cryosphere, surface waters, and groundwater flow within valley systems is still underexplored.

This study investigates the influence of rock glaciers on surface and shallow groundwater flow within riverbed hydrological
systems. Specifically, it examines the critical impact of a rock glacier in the Shar Shaw Taga catchment (St. Elias Mountains,
Yukon, Canada) on the watershed’s hydrological dynamics. The study’s originality lies in its focus on the indirect effects of
the rock glacier on the riverbed hydrological system, even in the absence of a prominent visible outflow. By providing insights
into the hydrological, hydrogeological, and physicochemical processes associated with rock glaciers, this research offers
findings that are globally applicable. A multimethod approach is employed, combining hydro-physicochemical and isotopic

characterization, with synoptic sampling, drone-based thermal infrared (TIR) imagery, and visible time-lapse (TL) imagery.

2. Study site

Shar Shaw Taga, meaning Grizzly Creek in the Southern Tutchone indigenous language, is a 32 km2 glacierized catchment
located within the traditional lands of the Kluane First Nation and the White River First Nation. It also lies within the
boundaries of Kluane National Park and Reserve in the St. Elias Mountains, southwestern Yukon Territory, Canada
(61°05'12.6" N, 139°07'17.6" W). The eastern flank of the St. Elias Mountains experiences a dry subarctic climate, with annual
precipitation ranging from 300 to 500 mm yr? (Wahl et al., 1987).

The upper Shar Shaw Taga catchment (Fig. 1b) contains eight glaciers, the largest of which is G-Al, covering an area of 3.2
kmz2. Faults are inferred along the valley floor (Dodds and Campbell, 1992). Due to its heavily fractured bedrock lithology and
steep slopes, the valley is characterized by significant mass wasting processes and depositional features, including nine
previously identified rock glaciers (Johnson, 1978; Evin et al., 1997). Between 1974 and 1997, Johnson participated to a series
of geomorphological studies on the valley (Johnson, 1974; 1978; 1980; 1983; 1986; 1992; Evin et al., 1997), providing detailed
descriptions of its landforms. The geomorphological identification and landform naming for these features, as established in

Johnson’s works, are adopted in this study to characterize the geomorphological setting.
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The significance of ground ice landforms in the valley has prompted recent investigations, including a study on buried ice
detection using ground-penetrating radar (GPR) in rocky and steep terrains (Tjoelker et al., 2024). Publications prior to 2024
referred to the area by the toponym "Grizzly Creek" rather than Shar Shaw Taga. Of the nine rock glaciers identified by
Johnson and Evin et al. (1978; 1997), seven extend into the riverbed along the valley floor, with some exerting considerable

geomorphological constraints on the stream.
140° W 139° W 139°11' W 139°9' W 139°7' W 139°5' W 139°3' W

* [0 rock glacier
[ aufeis

61° N

R0 10 .20 &Y
| ———— kM~ %,
= ¢ . ane

1 C s - w1 b s >
T
140° W 138° W 139°11' W 139°9' W 139°7'W 139°5' W 139°3' W

Fig. 1: (a) Overview map showing the location of the Shar Shaw Taga valley in southwestern Yukon, Canada. (b) Enlarged view of
the study area from panel (a), highlighting key geomorphological features. The black frame outlines the extent of the map shown in
Fig. 2b. Rock glaciers identified in earlier studies (Johnson, 1978; Evin et al., 1997) are marked in red. The study focuses on the RG-
Al rock glacier, located at the confluence of the G-Al and G-B1 subcatchments. The Shar Shaw Taga River, fed by glaciers G-Al,
G-A2, and G-A3, is constrained against the opposite talus slope by the RG-A1l rock glacier. An aufeis formation, highlighted in
yellow, develops during winter on the outwash plain between RG-Al and RG-B2. The fault network inferred by Dodds and Campbell
(1992) reveals the area’s fractured bedrock and faulted geology. ArcticDEM data: Polar Geospatial Center (Porter et al., 2023).
Basemap credits: Esri.

The present study investigates the hydrological influence of the RG-Al rock glacier, located on the western side of the upper
Shar Shaw Taga valley. RG-A1, first identified by Johnson (1978), spans elevations between 1700 and 1850 m a.s.l. The
southern lobes of RG-Al appear older, characterized by vegetation cover and a smoother frontal morphology, while the
northern lobes are younger, with sparse or absent vegetation, sharper forms, and a steeper front (Johnson, 1978). A frozen
layer, 20 to 40 m thick was detected in RG-Al during a previous geophysical study, which also suggested the presence of

massive ice lenses at depth (Evin et al., 1997). The front of RG-Al advances in the valley, constraining the Shar Shaw Taga
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River against the opposing talus slope. Although previous studies did not classify the opposing talus slope as a rock glacier, it
is suspected to be a protalus rampart (or small active rock glacier) based on environmental and topographic criteria outlined in
Scapozza (2015), such as the absence of an upstream permanent snow field, the presence of coarse boulders in the upslope
area, a steep front with exposed fine sediments, and its juxtaposition and superimposition to other rock glaciers.

The outwash plains upstream and downstream of RG-AL1 are separated by a “narrow section” of the Shar Shaw Taga River,
which can be divided into two subsections: N1 and N2. N1 extends from the outlet of the upstream outwash plain to a bedrock
outcrop visible on the opposite talus slope to RG-Al. N2 extends from this bedrock outcrop to the outlet of the “narrow
section”, where the rivers enters the downstream outwash plain. An aufeis forms in winter in the downstream outwash plain,
as confirmed through field studies since 2018 and satellite imagery. No aufeis has been detected in the upstream outwash plain
during this period.

In 1974, Johnson (1978) observed that meltwater drained into a sinkhole located in the rooting zone of RG-Al (at
approximately 1850 m a.s.l.), with no major resurgence observed at the front (at 1700 m a.s.l.). In 1975, a new sinkhole was
observed upstream of the first one, and a significant resurgence was reported on the northern part of RG-Al. Dry channels on
the surface of RG-A1 in 1975 were interpreted by Johnson as abandoned surface drainage pathways, highlighting the dynamic
and variable hydrological behaviour of RG-A1l.

Field observations by our research team from 2018 to 2023 confirm the absence of a significant visible outlet from the rock
glacier, despite its location downstream of a 8 km? subcatchment, consisting of the G-B1 and G-B2 glaciers. The only visible
outlets consist of low-discharge springs around the RG-A1 front, particularly concentrated along the N1 subsection. During
low-discharge periods such as June 2023, we observed that the water from the Shar Shaw Taga River infiltrates the riverbed,
leaving it dry before entering the outwash plain upstream of RG-Al. However, water was observed to flow again within the
riverbed in the N1 subsection, visually sustained by springs and seepage. During high-flow periods, the springs emerge directly
under the front of RG-AL. In dry periods, like June 2023, the springs shift away from the front and align with the current river

level, 10 to 20 m downstream.

3. Methods
3.1 Method overview

Since 2018, we have been investigating the hydrological and hydrochemical influence of RG-Al on the Shar Shaw Taga
catchment using a multimethod approach. Our primary hypothesis posits that RG-Al influences the formation of aufeis in the
downstream outwash plain. To test this hypothesis, we monitored aufeis formation and winter outflows by deploying a
timelapse (TL) camera in 2018, followed by a second TL camera installation in 2019. Additionally, an inventory of springs
was conducted in 2018, 2019 and 2021. These initial observations provided a preliminary understanding of the location and

timing of cryo-hydrological processes in the vicinity of RG-Al.



149
150
151
152
153
154
155
156
157
158
159
160
161
162

163

164
165
166
167
168
169
170

171

172
173
174
175
176
177
178

https://doi.org/10.5194/egusphere-2025-117
Preprint. Discussion started: 20 February 2025 G
© Author(s) 2025. CC BY 4.0 License. E U Sp here

Given the position of RG-A1l at the outlet of G-B1 subcatchment and the absence of significant surface outflow from it, we
hypothesized that the rock glacier drains the G-B1 subcatchment, and contributes to river discharge through groundwater
exfiltration. To investigate this, we sampled the Shar Shaw Taga River and springs near RG-Al in 2022 and 2023 to analyze
their physicochemical properties. Sampling was extended to the entire subcatchment upstream of RG-A1, including the ice-
debris complex and the G-B1 glacier snout, to identify potential water sources contributing to RG-A1’s groundwater outflow.
The aim of this analysis was to elucidate the origins of the spring waters and assess their hydrochemical impact on the Shar
Shaw Taga River.

The final phase of the study focused on characterizing the extent and magnitude of groundwater-surface interactions underlined
by the spring inventory and hydrochemical analysis. Due to the large spatial scale (several hundred meters) and the challenges
associated with differential stream gauging in proglacial environments, stream temperature heterogeneity was selected as a
proxy for detecting groundwater exfiltration (Baker et al., 2018; Brunner et al., 2017; Kalbus et al., 2006; Webb et al., 2008).
To this end, a drone-based thermal infrared (TIR) survey was conducted in June 2024 to identify zones of groundwater
exfiltration. This survey provided a detailed map of preferential groundwater exfiltration locations, contributing to the overall

understanding of the rock glacier’s influence on the riverbed hydrologic system.

3.2 TL monitoring

Two RGB timelapse (TL) cameras, designated TL1 and TL2, were positioned above the right bank of the Shar Shaw Taga
River (Fig. 2). TL1 was installed in 2018, focused on the central area of the outwash plain immediately downstream of RG-
Al.In 2019, TL2 was added adjacent to TL1, extending its field of view from the upper margin of TL1’s coverage to the outlet
of the N2 subsection of the Shar Shaw Taga River. Both cameras were configured to capture four images daily at 8:00, 11:00,
13:00, and 16:00. The visual analysis of the images captured by the TL cameras involved identifying signs of surface overflow
on the developing aufeis and documenting the occurrence of such events throughout the winter, following the protocol outlined
by Chesnokova et al. (2020).

3.3 Physico-hydrochemical characterisation

3.3.1 Sampling and field measurements

Physico-hydrochemical characterisation was undertaken over three distinct campaigns: June 2022, August 2022, and June
2023. These campaigns targeted both the Shar Shaw Taga River and springs inventoried from 2018 to 2021, capturing different
hydrological conditions. The June 2022 campaign coincided with the melt of a late and substantial snowpack. The August
2022 campaign took place during late summer, when glacial ablation was at its peak. The June 2023 campaign was conducted
following a winter with reduced snowpack and early snowmelt, after the primary snowmelt phase but before summer glacial

ablation commenced, while glaciers remained snow-covered.
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Field measurements included in situ pH, electrical conductivity (EC, corrected to 25 °C, expressed in uS cm™), and water
temperature (°C). Water samples were collected for laboratory analyses. Additionally, in June 2023, in situ radon
measurements were performed to further investigate groundwater contributions. Measurements were taken at each sampling
site using a calibrated Hanna HI 98195 multiparameter meter.

Water sampling followed a synoptic approach for cycles of 1-2 days, avoiding precipitation periods (e.g. Baraer et al., 2009).
When possible, sites were sampled multiple times within each campaign to account for diurnal fluctuations in physicochemical
parameters. Samples were categorized into four types (Table S1): glacial outlets from the RG-B1 snout (S-GL#), streams in
the ice-debris complex located between the RG-B1 snout and RG-A1 (S-IDC#), springs at the RG-A1 front and opposite talus
(S-RG#), and Shar Shaw Taga River (S-R#). Water samples were filtered using 0.45 pum syringe filters and collected in 50 mL
HDPE bottles, rinsed three times prior to sampling. Not all sites were accessible during each campaign (Table S1), due to
factors such as no flow or safety concerns related to snow cover and rockfalls.

Results were analyzed following the methodology of Baraer et al. (2015). Samples for major ion analysis were stored in a dark
environment at 4 °C until analysis. Major ions (Ca2*, Mg?*, Na*, Cl~, SO4>") and minor ions (K*, F) were analyzed at the LG2
laboratory, Ecole de technologie supérieure (ETS), Montreal, Canada. Cation concentrations were determined using an
inductively coupled plasma optical emission spectrometer (5110 ICP-OES, Agilent), and anion concentrations were measured
with an ion chromatograph (Dionex ED50, Thermo Fisher Scientific). Bicarbonate (HCOs") concentrations were calculated
from the charge balance equation, and total dissolved solids (TDS) were derived from the sum of ion concentrations.

Stable isotopic composition of the water molecule (8'%0 and 6°H) was measured using a cavity ringdown spectrometer (Picarro
L.2130-i) at the LG2 laboratory (ETS), Montreal, Canada, expressed in %o relative to Vienna Standard Mean Ocean Water
(VSMOW). Internal reference waters were used for normalization after every 3 injections. The analytical uncertainty is + 0.13
%o for 5'*0 and + 1.5 %o for 8?°H. The nearest local meteoric water line (LMWL) is established for the Whitehorse area 220 km
east of Shar Shaw Taga (Birks et al., 2004). The LMWL is similar to isotopic compositions found in the Lhi'aan Man' (Kluane
Lake), 25 km east of Shar Shaw Taga (Brahney et al., 2010). The LMWL is displayed alongside the analyses results as
reference (Fig. 6d, Fig. 7d and Fig. 8d).

Radon (222Rn) serves as a natural tracer to detect groundwater exfiltration in streams (Cartwright and Hofmann, 2016). In situ
radon activities were measured at four locations in the N1 subsection, including S-RG8 and S-RG9A springs, and at the
upstream and downstream ends of the N1 subsection (S-RUP and S-R1, respectively). A portable RAD7 Radon Monitor
(Durridge) was used, coupled with the Rad Aqua accessory (Durridge) for radon degassing. Results are reported in Bq m,
with an analytical uncertainty of + 220 Bq m™.

3.3.2 Principal Component Analysis and clustering
Principal Component Analysis (PCA) was employed to classify the origins of the sampled water and to identify sample groups

that influence the chemistry of the Shar Shaw Taga River. For each of the three sampling campaigns, PCA was performed
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using a set of independent variables: water temperature, 5'*0, Na*, Mg?*, Ca?*, and SO+>". These major ions were selected as
they exhibited concentrations above the detection limit in more than 95 % of the samples. Principal components explaining at
least 90 % of the total variance were retained for further analysis to ensure the robustness of the PCA.

After conducting PCA, clustering analysis was performed using the k-means algorithm for each campaign (Lloyd, 1982;
MacQueen, 1967). This analysis was based on the sample scores derived from the selected principal components. The
maximum number of clusters was set at 25 % of the total number of samples for each campaign, which corresponded to 5, 9
and 7 for the campaigns of June 2022, August 2022, and June 2023, respectively. The algorithm determined the resulting
clusters were by associating samples with dominant combinations of variables, thereby highlighting inherent patterns within
the dataset.

3.4 TIR survey

Aerial or handheld thermal infrared (TIR) devices have been demonstrated as effective tools for mapping groundwater
discharge into streams (Toran, 2019). Specifically, drone-based TIR technology allows for high spatial resolution observations
of surface water-groundwater interactions (Vélez-Nicolas et al., 2021). Two common approaches for TIR surveys were
considered: 1) generating stream temperature maps using high-definition TIR image ortho-mosaics from overlapping images
(e.g., Abolt et al., 2018; Casas-Mulet et al., 2020; Rautio et al., 2015), and 2) using TIR videos or real-time scans (handheld
or drone-based) to visualize mixing plumes and record GPS coordinates of observed points (e.g., Barclay et al., 2022; Briggs
et al., 2016; Iwasaki et al., 2023). While georeferenced thermal maps provide mesoscale coverage, they require stable flying
conditions, ground control points, and extensive postprocessing (Webb et al., 2008). In contrast, TIR video or live scans allow
for real-time visualization of mixing dynamics in smaller-scale areas (Antonelli et al., 2017). Given our goal to identify and
characterize groundwater exfiltration zones, we chose the TIR video approach.

Drone-based TIR video surveys were conducted on 28 June 2024, between 8:00 and 10:00, to maximize the coverage of shaded
sections of the stream. The surveys were conducted using a DJI Mavic Enterprise 3T, equipped with a DJI RTK module and a
DJI D-RTK 2 mobile station for GNSS base-station support. The Mavic 3T features a 48-megapixel RGB camera with a 24
mm focal length and a 640x512-pixel thermal camera with a 40 mm focal length. The drone was manually controlled to
optimize the capture of surface temperatures across wide sections of the Shar Shaw Taga River, recording both TIR and RGB
videos simultaneously. Flight altitudes ranged from 5 to 20 m, depending on the section.

The survey began 180 m upstream of the N1 subsection and ended 800 m downstream of the N2 subsection (Fig. 2). Due to
difficulties in flying over the “narrow section”, it was surveyed twice at different elevations.

The TIR video was visually analyzed to identify cold groundwater exfiltration areas using two criteria: 1) a clear contrast
between the dominant stream surface temperature and the suspected exfiltration area, with an area larger than 10 cm?, and 2)
the presence of a turbulent mixing zone at least 1 meter in length immediately downstream of the suspected area (flight data

and information are available as Supplemental Material in Charonnat and Baraer, 2025). When both criteria were met, the
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RGB video was used for confirmation. The Shar Shaw Taga River, originating from glacial melt, has a substantial suspended
sediment load, whereas groundwater is nearly free of suspended sediments. This contrast is visible in the RGB video frames.
Finally, images of confirmed groundwater exfiltration areas were extracted from the videos for size evaluation. Exfiltration
areas from the left bank were labeled TIR-L#, and those from the right bank were labeled TIR-R#.
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Fig. 2: Map illustrating the methods used in this study. Panel (a) corresponds to the area shown in Fig. 1b, while panel (b) provides
a zoom-in of panel (a). A bedrock outcrop on the talus slope opposite to RG-A1l marks the division of the Shar Shaw Taga River’s
“narrow section” into two subsections, N1 and N2, as shown on the map. The positions of time-lapse cameras TLC1 and TLC2 are
indicated on the southern front of RG-B2, with their southwest and southeast orientations, respectively. The area covered by the
drone-based TIR survey extends along the Shar Shaw Taga riverbed from the northern front of RG-B2 downstream to the southern
front of RG-A1, passing through two outwash plains. Sampling sites are depicted with different symbols depending on their type:
glacial outlet from the G-B1 snout (S-GL#), Shar Shaw Taga River (S-R#), ice-debris complex stream (S-1DC#), and springs at RG-
Al front and opposite talus (S-RG#). The spring locations represent the outflow points observed during the August 2022 campaign,
though their positions may vary depending on hydro-meteorological conditions. Basemap credits: Esri.
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4. Results
4.1 TL monitoring

Between 2018 and 2021, TL1 monitored aufeis formation during the winters of 2018-2019 and 2019-2020 (Fig. 3 and 4a). No
aufeis formation was observed during the winter of 2020-2021. The onset of aufeis development varied between the two
winters: in 2018-2019, it began in early November and continued to develop throughout the winter season, whereas in 2019-
2020, it started in February and progressed through February and March (Fig. 3). The development of the aufeis in both winters
occurred in phases characterized by multiple flood events. Visible ablation of the aufeis began in May, with complete melt
occurring by June in both 2019 and 2020. The aufeis that formed during the winters of 2018-2019 and 2019-2020 spanned the
entire width of the river, from the RG-A1 front to the RG-B2 front.

Nov 1% Dec 1% Jan 1% Feb 1 Mar 13t

2018/2019 B

2019/2020

2020/2021

Fig. 3: Monthly timelapse images captured by TL1 of the aufeis from November 1st to March 1st during the winters of 2018-2019,
2019-2020, and 2020-2021. The yellow dashed line indicates the extent of the aufeis in each image when visible. The timelapse images
were selected based on the closest date to the first day of each month, with consideration given to image quality. Note that no aufeis
formation occurred during the 2020-2021 winter.

TL2, installed in 2019 next to TL1 and oriented upstream, recorded the formation of the aufeis in the winter of 2019-2020 and
its absence during 2020-2021. In the winter of 2020, TL2 captured reflections of liquid water and/or ice at the end of the N2
subsection, when the river was dry (Fig. 4). In subsequent days, the aufeis was observed to form in the downstream outwash
plain, starting from the end of the N2 subsection. This observation suggests that the overflowing water contributing to the

formation of the aufeis originates from the “narrow section” of the Shar Shaw Taga River.
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Fig. 4: Initiation of an aufeis in the downstream outwash plain, captured by TL2 on (a) 04/01/2020 at 08:00, and (b) 08/01/2020 at
11:00. The light in the raw images has been enhanced to improve picture quality. Both images are oriented towards the end of the
N2 subsection and the entrance of the downstream outwash plain. (a) At 8:00 on 04/01/2020, the aufeis has not yet formed, but
reflections of ice and/or liquid water are visible at the end of the N2 subsection, during a time when the Shar Shaw Taga River is
dry. (b) At 11:00 on 08/01/2020, the aufeis has started to form in the outwash plain, extending from the end of the N2 subsection.

The repetitive monitoring of the aufeis provides evidence of overflow events during late fall and winter, particularly in the
2018-2019 and 2019-2020 periods. The formation of the aufeis is attributed to groundwater outflow from the “narrow section”
of the Shar Shaw Taga River, as the river runs dry in winter in the downstream outwash plain and no aufeis forms in the

upstream outwash plain. This finding aligns with the high density of springs inventoried along the N1 subsection.

4.2 Physico-hydrochemical characterization
4.2.1  Sampling and field measurements

A high concentration of springs was reported along the N1 subsection of the Shar Shaw Taga River (S-RG5 to S-RG11) from
2018 to 2021, and during the 2022 sampling campaigns. This led to a dedicated sampling campaign in June 2023. Many of
these springs were sampled across multiple campaigns, indicating their long-term flow. The June 2022 and August 2022
sampling campaigns can be directly compared for the springs at RG-A1’s front, given their similar spatial coverage and
sampling sites. In contrast, the June 2023 sampling campaign focused specifically on the N1 subsection of the river (Table
S1).

The mean water temperature for samples collected from the springs at RG-A1’s front in June 2022 was 0.90 °C, with a range
of 3.16 °C, slightly colder than in samples from August 2022, exhibiting a mean temperature of 1.38 °C and a range of 3.77
°C (Table S2). While cold temperatures in June 2022 may have been strongly influenced by recent snowmelt, no snow

remained at the lower elevations of the catchment in August 2022. In late season, cold groundwater outflows (< 2 °C) suggest

11



303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

https://doi.org/10.5194/egusphere-2025-117
Preprint. Discussion started: 20 February 2025 G
© Author(s) 2025. CC BY 4.0 License. E U Sp here

the possible presence of frozen content in the vicinity of springs (Carturan et al., 2016; Frauenfelder et al., 1998; Haeberli,
1975; Scapozza, 2009).

The June 2022 campaign recorded a lower mean EC in springs at RG-A1’s front of 225.64 uS cm, with a range of 439.10 puS
cm?, compared to 490.82 uS cm® with a range of 546.72 uS cm™ in August 2022. These results indicate dilution due to
snowmelt in early season and increased groundwater contribution in late season, consistent with results from other rock glacier
hydrology studies (Jones et al., 2019). The high EC ranges highlight the heterogeneous behavior of the sampled springs. Mean
pH values were 8.47 in June 2022 and 8.13 in August 2022, with ranges of 1.84 and 1.00, respectively.

The mean isotopic composition was more depleted in the springs at RG-A1’s front in June 2022 (-23.57 %o vs. VSMOW for
880 and -183.69 %o vs. VSMOW for 62H, with ranges of 1.64 %o and 8.78 %o, respectively) compared to August 2022 (-21.01
%o vs. VSMOW for 8'#0 and -169.20 %o vs. VSMOW for &?H, with ranges of 1.38 %o and 9.68 %o, respectively). This depletion
is associated with a higher snowmelt contribution in June 2022. Solute concentrations were generally lower in June 2022,
frequently falling below detection limits for chlorides (all samples < 0.13 mg L1), potassium (13 out of 20 samples < 0.01 mg
L), sodium (13 out of 20 samples < 0.09 mg L), and magnesium (1 out of 20 samples < 0.03 mg L). In contrast, in August
2022, solute concentrations exceeded detection limits for 38 out of 39 samples for all elements except chlorides (36 out of 39
samples < 0.13 mg L1).

The June 2023 campaign showed a mean water temperature for the rock glacier springs of 1.40°C, with a range of 0.23 °C.
The mean EC value for June 2023 was 678.43 uS cm, with a range of 172.00 pS cm™. The mean pH value was 7.82 with a
range of 0.23. The mean isotopic composition for the springs during this campaign was -22.86 %o vs. VSMOW for §'*0 and -
178.11 %o vs. VSMOW for 8°H, with ranges of 0.30 %o and 1.10 %o, respectively.

In June 2023, while the Shar Shaw Taga River level was lower than in previous years for the same period, 22Rn activities were
similar at S-RG8 and S-RG9A, ranging from 10.17x10°% + 0.22x10° Bq m™ to 10.85x10° + 0.19x10% Bq m™ (Fig. 5). These
springs are located along the N1 subsection of the river, at the left and the right of the stream, respectively. In contrast, the
Shar Shaw Taga River at the upstream end of the N1 subsection (S-RUP) exhibited low activities (0.36x10° + 0.06x10° Bq m-
3), while the downstream end of N1 (S-R1) showed significantly higher activities (5.46x10% + 0.14x10° Bq m3). These results

indicate a major groundwater input to the Shar Shaw Taga River in the N1 subsection, where S-RG8 and S-RG9A are located.

12
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Fig. 5: 22Rn activities measured with a portable RAD7 Radon Monitor (Durridge) in June 2023. Data were collected at springs S-
RG8 and S-RG9A (orange) and along the Shar Shaw Taga river at upstream (S-RUP) and downstream (S-R1) sites (purple). The
bars are arranged from left to right in spatial sequence from upstream to downstream. The error bars represent the uncertainties
in the radon activity measurements.

4.2.2  Principal Component Analysis and clustering

Samples collected in June 2022

Principal Component (PC) 1 accounts for 60.96 % of the variance in the dataset and primarily reflects the influence of mineral
elements, with PC scores ranging from 0.47 to 0.50 (Fig. 6a). PC2 and PC3, explaining 18.29 % and 14.10 % of the variance,
respectively, exhibit contrasting associations with the %0 ratio and temperature. PC2 displays a strong positive correlation
with the 6'#0 ratio (0.73) and a negative correlation with temperature (-0.67), whereas PC3 shows positive correlations with
880 (0.62) and temperature (0.71).

Clustering analysis based on PCA reveals two distinct clusters among the June 2022 samples (Fig. 6b). Cluster 1 comprises
17 samples characterized by low concentrations of mineral elements (Fig. 6¢), with total dissolved solids (TDS) concentrations
ranging from 28 to 100 mg L. In contrast, Cluster 2 includes samples S-RG4, S-RG5, and S-RG8, which show elevated TDS
values (90 to 269 mg L™). With the exception of S-RUP, S-RG4, and S-RG15, which record warmer temperatures from 1.43
to 3.19 °C, the remaining 16 samples in the June 2022 dataset exhibit colder temperatures, ranging from 0.03 °C to 0.67 °C
(Fig. 6¢). The most enriched samples are S-RG7, S-RG8, and S-RG10, with 5'*0 values between -23 %o and -22.6 %o vs.
VSMOW in §'%0.
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In June 2022, most of the springs were supplied by recent snowmelt, as indicated by low concentrations of mineral elements
and cold temperatures. In contrast, S-RG8 and S-RG4 were supplied by groundwater, as evidenced by their higher
concentrations of mineral elements.
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Fig. 6: (a) PCA scores for June 2022 samples. Scores are displayed for PC1, PC2, and PC3, which together account for over 90% of
explained variance. The six variables used in the analysis are water temperature (T), §'*0, Na*, Mg?*, Ca*", and SO4>" concentrations.
The explained variance for each PC is indicated in the legend of the horizontal axis. (b) Distribution of clusters formed from June
2022 samples following PCA and k-means clustering. Symbols represent different sample types, and ellipses illustrate the
distribution of each cluster. (c) Distribution of total dissolved solids (TDS) concentrations and water temperature for the June 2022
samples. Symbols represent different sample types. (d) Isotopic composition of the June 2022 samples. Symbols represent sample
types. The black line represents the linear regression for the June 2022 samples, defined as 6’H = 5.97%6'*0-42.70. The blue line
represents the nearest local meteoric water line (LMW.L), established for the Whitehorse area, located 220 km east of the Shar Shaw
Taga catchment (Birks et al., 2004). This line is similar to the isotopic compositions found in the Lhu'aan Man' (Kluane Lake), 25
km east (Brahney et al., 2010).

Samples collected in August 2022

PC1 accounts for 60.57 % of the variance in the dataset and is strongly influenced by solute concentrations, with PC scores
ranging from 0.47 to 0.48 (Fig. 7a). PC2, which explains 22.34 % of the variance, reflects opposing influences of temperature
(0.68) and isotopic composition (-0.63). PC3, accounting for 9.01 % of the variance, shows joint positive correlations with
both temperature (0.71) and isotopic composition (0.63).

Clustering analysis clearly distinguishes different sample types, forming 9 clusters, the maximum achievable based on the
parametrization (Fig. 7b). Cluster 3 consists of glacial outlet samples, characterized by low solute concentrations (16 to 38 mg
Ltin TDS), cold temperatures (0.06 to 0.07 °C), and depleted isotopic compositions (-21.6 to -22 %o vs. VSMOW in §'®0) as
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seen in Figs. 7c and 7d. Clusters 5 and 6 comprise Shar Shaw Taga River samples, with warmer temperatures (3.47 °C to 6.26
°C), higher solute concentrations (88 to 238 mg L in TDS), and depleted isotopic compositions (-21.8 to -22.2 %o vs. VSMOW
in 6'*0). The distinction between these clusters may be attributed to variations in the glacial regime diurnal cycle and weather
conditions based on sampling times. Clusters 4 and 8 include samples from springs near the upper end of the rock glacier front
and at the transition area with the ice-debris complex (e.g., S-IDC5, S-RG1, S-RG2). As shown in Figs. 7c and 7d, these
springs display high concentrations of mineral elements (209 to 304 mg Ltin TDS) and enriched isotopic compositions (-20.6
t0 -20.9 %o vs. VSMOW in 6'#0). Clusters 2 and 9 are represented by springs S-RG7, S-RG8, S-RG9A, and S-IDC1, which
exhibit high but narrow ranges of solute concentrations (282 to 309 mg L in TDS) and more depleted isotopic compositions
(-21.6 t0 -21.8 %o vs. VSMOW in §'*0), as shown in Fig. 7d. Clusters 1 and 7 include other springs from the N1 subsection of
the Shar Shaw Taga River, which are characterized by low solute concentrations (111 to 162 mg L in TDS) and enriched
isotopic compositions (-20.4 to -20.9 %o vs. VSMOW in §'*0). Fig. 7d clearly distinguishes samples with depleted isotopic
compositions (below -21.5 %o vs. VSMOW in 6'*0) from those with enriched compositions (above -20.9 %o vs. VSMOW in
31%0).

In late summer, the hydrochemical signatures of the springs show significant contrasts, with a high number of clusters.
However, springs S-RG7, S-RG8, and S-RG9A share isotopic signatures similar to glacial meltwater from S-G1, S-G2, and
S-G3, indicating a glacial input. Despite being located on opposite sides of the river, these springs cluster together, contrasting
with the other springs. The high number of clusters among the other springs, with more enriched isotopic compositions, is
likely due to different local drainage systems influenced by summer precipitation. Interactions between the groundwater
sources of these two spring types may explain the varying clustering patterns and physicochemical values observed for RG-7
and RG-8. Most of the rock glacier spring samples show very cold temperatures (< 2 °C; Fig. 7c), suggesting proximity to

massive ice or permafrost areas (e.g. Carturan et al., 2016).
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Fig. 7: (a) PCA scores for August 2022 samples. Scores are displayed for PC1, PC2, and PC3, which together account for over 90%
of explained variance. The six variables used in the analysis are water temperature (T), §'*0, Na‘*, Mg?, Ca?, and SO.*
concentrations. The explained variance for each PC is indicated in the legend of the horizontal axis. (b) Distribution of clusters
formed from August 2022 samples following PCA and k-means clustering. Symbols represent different sample types, and ellipses
illustrate the distribution of each cluster. (c) Distribution of total dissolved solids (TDS) concentrations and water temperature for
the August 2022 samples. Symbols represent different sample types. (d) Isotopic composition of the August 2022 samples. Symbols
represent sample types. The black line represents the linear regression for the August 2022 samples, defined as 6*H = 7.44*§'*0O-
11.92. The blue line represents the nearest local meteoric water line (LMWL), established for the Whitehorse area, located 220 km
east of the Shar Shaw Taga catchment (Birks et al., 2004). This line is similar to the isotopic compositions found in the Lhu‘aan Man'
(Kluane Lake), 25 km east (Brahney et al., 2010).

Samples collected in June 2023

PCA conducted on samples collected in June 2023 revealed that PC1 accounts for 68.79 % of the variance (Fig. 8a), primarily
driven by solute concentrations (PC scores ranging from 0.40 to 0.48). PC2 and PC3 explain 15.54 % and 10.43 % of the
variance, respectively. PC2 is mainly influenced by water temperature (0.88), while PC3 is dominated by isotopic composition
(0.86).

The glacier outlet samples form a distinct cluster, labeled as Cluster 3 (Fig. 8b). The remaining samples are divided into two
clusters, with a clear distinction based on the maximum number of clusters (5). Cluster 1 consists solely of Shar Shaw Taga
River samples from the upstream part of the N1 subsection. Cluster 2 includes spring samples and Shar Shaw Taga River
samples collected in the downstream part of the N1 subsection. River samples from the downstream N1 subsection and spring
samples exhibit higher solute concentrations (from 121 to 147 mg L in TDS) and colder temperatures (from 0.7 to 4 °C, with

14 out of 16 samples < 2 °C) compared to the upstream N1 samples, which have lower solute concentrations (87 to 125 mg L-

16



417
418
419
420
421
422
423
424
425
426
427
428

429

430
431
432
433
434
435
436
437
438
439

440

https://doi.org/10.5194/egusphere-2025-117
Preprint. Discussion started: 20 February 2025 G
© Author(s) 2025. CC BY 4.0 License. E U Sp here

1) and warmer temperatures (5.3 to 9.5 °C; Fig. 8c). The isotopic composition is generally more enriched for the upstream N1
river samples than for the downstream N1 river and spring samples (Fig. 8d). The isotopic composition of one of the two
glacial water samples from G-B1 (sample S-GL1) is similar to the composition from the Shar Shaw Taga River in upstream
N1 (water flowing from G-Al). However, the second S-GL1 sample shows a much more enriched isotopic composition, due
to a two-day interval between the respective samplings. The most enriched sample (-21.2 %o vs. VSMOW in 6'*0 and -165.4
%o vs. VSMOW in §?H) was taken first, when the G-B1 glacier was still snow-covered. The most depleted sample (-22.4 %o
vs. VSMOW in §'®0 and -173.6 %o vs. VSMOW in §?H) was taken two days later, following significant snowmelt cover on
G-B1 and the initiation of glacial melt.

The springs located on opposite sides of the river along the N1 subsection cluster together and exhibit similar hydrochemical
signatures, similar to what was observed in August 2022. By distinguishing between two clusters, the PCA highlights the
important influence of these springs on the Shar Shaw Taga River. Their outflows significantly lower the water temperature

and increase solute concentrations in the river.
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Fig. 8: (a) PCA scores for June 2023 samples. Scores are displayed for PC1, PC2, and PC3, which together account for over 90% of
explained variance. The six variables used in the analysis are water temperature (T), $'*0, Na*, Mg?, Ca?*, and SO.* concentrations.
The explained variance for each PC is indicated in the legend of the horizontal axis. (b) Distribution of clusters formed from June
2023 following PCA and k-means clustering. Symbols represent different sample types, and ellipses illustrate the distribution of each
cluster. (c) Distribution of total dissolved solids (TDS) concentrations and water temperature for the June 2023 samples. Symbols
represent different sample types. (d) Isotopic composition of the June 2023 samples. Symbols represent sample types. The black line
represents the linear regression for the June 2023 samples, defined as 8*H = 6.59*6'®*0-27.67. The blue line represents the nearest
local meteoric water line (LMWL), established for the Whitehorse area, located 220 km east of the Shar Shaw Taga catchment
(Birks et al., 2004). This line is similar to the isotopic compositions found in the Lhu'aan Man' (Kluane Lake), 25 km east (Brahney
et al., 2010).
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Synthesis of physico-hydrochemical characterisation

The springs surrounding RG-A1’s front exhibit heterogeneous hydrochemical signatures. However, a group of springs along
the N1 subsection (S-RG7, S-RG8, and S-RG9A) cluster together in PCA and share high EC values, depleted isotopic
compositions, high solute concentrations, and similar radon activities. Despite being located on opposite sides of the river,
these three springs show striking similarities, suggesting a common origin. Their isotopic compositions are comparable to
those of glacial meltwater sampled at G-B1 and in the Shar Shaw Taga River, differing significantly from other springs along
RG-A1’s front. The contribution of internal ice melt in rock glacier outflows is known to be minimal and does not significantly
influence isotopic signatures (Croce and Milana, 2002; Krainer and Mostler, 2002; Krainer et al., 2007). This evidence supports
the conclusion that S-RG7, S-RG8, and S-RG9A are springs fed by shallow groundwater of glacial origin.

During low-discharge periods, such as June 2023, the springs along the N1 subsection considerably increase downstream
solute concentrations and radon activities in the Shar Shaw Taga River, while their cold outflows reduce stream temperature.
The other springs around RG-A1’s front are primarily supplied by snowmelt in early summer and by summer precipitation in
late summer. Their diverse hydrochemical signatures and resulting clusters reflect varying local drainage systems within the

rock glacier. Springs at the front of RG-A1 consistently exhibit cold temperatures, indicating their proximity to ground ice.

4.3 TIR survey

The TIR survey detected four cold water outflows outside the “narrow section” of the Shar Shaw Taga River, located in the
outwash plain downstream of RG-A1l (Fig. 9). Two outflows were identified on the left bank: one associated with meltwater
originating from a snow patch at the front of RG-A1, and the other is from a persistent snow patch on the west flank of the
valley. The other two outflows were located on the right bank, originating from the middle of the outwash plain near the front
of RG-B2. These four outflows are not supplied by RG-AL, as they originate from snow patches or from the right bank.

The furthest downstream exfiltration area in the “narrow section” (TIR-L8) is situated in the N1 subsection, just a few meters
upstream of the bedrock outcrop (Fig. 9). Within the N1 subsection, eight groundwater exfiltration areas were identified on
the left bank of the main channel, and six on the right bank. Exfiltration areas on the left bank are generally smaller, with
plume lengths ranging from 1 to 6 m, four of these less than 2 m long. In contrast, exfiltration areas on the right bank are larger,
with plume lengths ranging from 5 to 14 m, and four exceed 10 m in length. These exfiltration areas were clearly visible as
color contrasts, distinguishing the warmer surface waters from the colder groundwater exfiltrations (Fig. 10a). The positions
of the mixing plumes were observed at each location. In the most notable exfiltration areas (plume lengths > 2 m), clearer
water was observed in the visible video footage, facilitating the validation of groundwater exfiltration detection (Fig. 10b).
Two of the six groundwater exfiltration areas detected from the right bank can be associated with springs sampled and
measured during the 2022 and 2023 campaigns for physico-hydrochemical analysis (TIR-R2 and TIR-R3 correspond to S-
RGOYA and S-RG9B, respectively). As mentioned in Sect. 2, depending on the river level and meteorological conditions, the

outflow locations of the springs on the left side of the river have been observed to shift 10 to 20 m downstream of the RG-Al
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front. During the TIR survey, these conditions were met, and no exfiltration area was found directly at the location of a spring
sampled in 2022 and 2023. Instead, exfiltration areas on the left bank were detected 20 m downstream of their corresponding
springs sampled earlier. Therefore, exfiltration areas TIR-L1, TIR-L2 and TIR-L8 can be associated with the springs S-RG8,
S-RG10 and S-RG11, respectively (Fig. 9).

The drone-based TIR survey identified a high density of cold groundwater exfiltrations from both the left and right banks of
the N1 subsection of the Shar Shaw Taga River, upstream of the bedrock outcrop. Exfiltration areas on the right bank exhibited
longer plumes, suggesting higher discharge. Two cold outflows were detected in the downstream outwash plain on the left
bank, but no groundwater origin was identified for these.

139°7'50" W 139°7'40" W 139°7'30" W 139°7'20" W 139°7'10" W

area of thermal infrared
survey

stream
<« riverbed subsections
= cold water streams

61°5'30" N
61°5'30" N

— cold outflows from left
bank

cold outflows from right
L bank

@ talus/rock glacier spring
o 9 I bedrock outcrop
e U T snow patch

61°5'20" N

61°5'10" N

61°5'N

139°7'50" W 139°7'40" W 139°7'30" W 139°7'20" W 139°7'10" W

Fig. 9: Location of cold water outflows detected by the TIR survey along the Shar Shaw Taga riverbed. The zoomed-in view of the
“narrow section” highlights an area with a high density of cold groundwater outflows detected on both sides of the river, upstream
of a bedrock outcrop constraining the riverbed. Additional cold water outflows are observed in the downstream outwash plain,
originated from either snow patch melt on the left side or from the right bank of the outwash plain. Springs that outflow from RG-
Al or the opposite talus slope and were sampled during the 2022 and 2023 campaigns are marked in the zoomed-in panel. The spring
locations represent the positions of their outflows during the August 2022 campaign, though these may shift depending on hydro-
meteorological conditions and river level. The bedrock outcrop marks the division of the “narrow section” of the Shar Shaw Taga
River into two subsections, N1 and N2, as shown on the map. Basemap credits: Esri.
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Fig. 10: (a) TIR capture showing cold groundwater outflow (in blue, delimited by the dashed white line), mixing with the warmer
waters of the Shar Shaw Taga River (in green) at the TIR-R2 location. Note that the video does not provide a color scale. (b) RGB
image capture showing clear water outflowing into the Shar Shaw Taga River, which is characterized by a significant sediment load
at the TIR-R2 location. The cold water area detected with TIR is delimited by the dashed white line. The extent of the TIR capture
is indicated by the dashed red line. Flight data and information can be accessed as Supplemental Material in Charonnat and Baraer,
2025.

5 DISCUSSION
5.1 The rock glacier forces resurgence of shallow groundwater flow

The preliminary inventory of springs and the TIR survey identified a high density of spring outflows from both banks of the
N1 subsection of the Shar Shaw Taga River. The physico-hydrochemical characterization indicates that the springs on both
banks share a similar signature, originating from glacial melt, suggesting a common source. In June 2023, a low-discharge
period, field observations revealed river water losses before entering the upstream outwash plain, where the riverbed
temporarily lacked surface flow. Surface flow resumed only from the N1 subsection due to groundwater inflows, pointing to
the existence of shallow subsurface flow through the upstream outwash plain. Together, these elements indicate that water
outflowing from the springs along the N1 subsection resurges from lateral shallow groundwater, likely infiltrating through the
riverbed and flowing within the lateral alluvial aquifer before resurfacing.

Contrary to initial hypotheses, no evidence was found of outflow supplied by the head of the rock glacier’s subcatchment
(comprising glaciers G-B1 and G-B2). The physico-hydrochemical characterization instead suggests that glacial meltwater
outflowing to the river originates from the upstream outwash plains of the main Shar Shaw Taga catchment. The
characterization of the other springs at the rock glacier’s front suggests that they are linked to local drainage systems within
the rock glacier. They are supplied by snowmelt in early season and summer precipitation in late season, with minimal or

negligible glacier melt contribution, as shown by the physico-hydrochemical characterization of the samples from June 2022
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and August 2022, respectively. Some springs may be influenced by both systems, with their physicochemical parameters and
clustering reflecting these dual influences depending on hydro-meteorological conditions and time periods.

Parafluvial flow is common in outwash plains with coarse-grained unconsolidated sediments, occurring in river reaches where
water is lost before rejoining the river in gaining reaches (Cartwright and Hofmann, 2016). Outwash plains, often underlain
by bedrock, retaining groundwater in the shallow subsurface, providing baseflow during dry periods when upstream discharge
is limited (Muller et al., 2024). Fractured and faulted bedrock aquifers can further contribute to baseflow in outwash plains
(Hayashi, 2019; Mller et al., 2022). In this case, the resurgence of parafluvial and shallow groundwater flow is visible during
dry periods. The dynamic location of the springs reported between sampling campaigns reflects the lateral and vertical extent
of the alluvial aquifer. The lower density of springs identified beyond the bedrock outcrop at the end of the N1 subsection
suggests a shallow bedrock interface with limited groundwater flow capacity. Additionally, the faults inferred along the
riverbed in previous geological studies (Dodds and Campbell, 1992) may facilitate groundwater flow from outwash plains
upstream of the rock glacier to the N1 subsection, where it is forced to resurge.

The cold temperatures measured in the springs of the N1 subsection indicate that outflows from the alluvial aquifer are cooled
by adjacent frozen content. Frozen content has been confirmed in the rock glacier by Evin et al. (1997), and is suspected for
the talus slope, based on Scapozza, (2015). The frozen content on both sides of the Shar Shaw Taga River constrains the
alluvial aquifer, forcing groundwater to resurface through springs and cold water upwellings in the riverbed. The advance of
the rock glacier, which considerably narrows the riverbed, further enforces this constraint. The younger lobes of the rock
glacier, potentially containing higher amounts of frozen content, extend north from the bedrock outcrop to the downstream
outwash plain, possibly acting as an additional barrier to groundwater flow where they border the Shar Shaw Taga River. Thus,
the location of the resurgences in the N1 subsection can be explained by the geomorphic properties of the rock glacier. The
narrowing of the riverbed by the rock glacier’s advance and the presence of frozen content constrain the riverbed, forcing the

resurgence of shallow groundwater flow.

5.2 The rock glacier affects downstream cryo-hydrological processes and hydrological continuity

The proximity of bedrock and ground ice in the narrow section of the Shar Shaw Taga River critically reduces the width and
depth of the alluvial aquifer, leading to groundwater exfiltrations along the N1 subsection, as discussed in Sect. 5.1. The TL
monitoring suggests that the resurgences from the alluvial aquifer, in combination with a decrease in river flow velocity and
channel depth in the outwash plain immediately downstream of the rock glacier, contribute to the formation of aufeis. Thus,
the rock glacier plays a significant role in influencing downstream cryo-hydrological processes.

The high density of springs along the N1 subsection and their distinct physicochemical signatures substantially affect the
downstream Shar Shaw Taga River. The physico-hydrochemical characterization from June 2023 demonstrates that during
dry periods, these springs notably increase solute concentrations and radon activities, while simultaneously cooling the river

water. These findings are consistent with prior studies showing the influence of rock glaciers on the physicochemical
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characteristics of downstream surface waters (e.g., Bearzot et al., 2023; Brighenti et al., 2023; Robinson et al., 2022; Wagner
et al., 2021). However, the rock glacier in this study alters the entire riverbed and its physicochemical parameters primarily
due to its geomorphic properties. Contrary to initial hypotheses based on early observations and the literature, its internal

hydrological behavior does not account for the critical impact the rock glacier has on the riverbed’s hydrological system.

5.3 Future evolution of the rock glacier influence on catchment hydrology

Predicting the future evolution of the system described in Sect. 5.1 and 5.2 is challenging. However, several scenarios across
different timescales can be envisioned. Frozen content is likely to persist in depositional landforms for extended periods, as
residual ice has been detected in rock glaciers below the modeled elevation limit in multiple cases (e.g., Carturan et al., 2024;
Colucci etal., 2019). Future hydrological conditions in alpine catchments will likely be characterized by a reduced hydrological
influence of glaciers, lower discharge and an increased contribution from groundwater and periglacial features to streamflow
(Huss et al., 2017; Jones et al., 2019; Zierl and Bugmann, 2005). These conditions were observed during the June 2023
sampling campaign, which occurred after the peak of snowmelt and prior to the peak of glacial ablation, leading to a substantial
influence of groundwater resurgences on the Shar Shaw Taga River. Similar conditions may be expected in the future, with
groundwater outflows caused by the rock glacier expected to gain influence in the Shar Shaw Taga River. However, the
degradation of frozen content around the riverbed may alter this scenario, as rising air temperatures continue to drive
permafrost thaw. Additionally, thermal and mechanical erosion caused by lateral groundwater flow could expand the
parafluvial zone and create alternative subsurface flow paths, reducing the hydrological discontinuity and disruptive effects of
the rock glacier.

The absence of evident streamflow contribution from the G-B1 subcatchment to the Shar Shaw Taga River, as highlighted in
Sect. 5.1, suggests substantial deep infiltration of surface and shallow groundwater flow between the glaciers of the
subcatchment and the rock glacier. Although the role of rock glaciers in deep infiltration has not been thoroughly documented
to our knowledge, it is suggested that their high vertical and horizontal flow transmissivity may enhance infiltration into deep
aquifers and groundwater recharge (Navarro et al., 2023). From a broader perspective, it is considered that deep groundwater
systems link mountain cryosphere components to lowlands aquifers through mountain-block recharge (van Tiel et al., 2024).
In this context, increased infiltration due to glacial retreat and permafrost degradation may position rock glaciers and other

depositional features as critical hubs in proglacial areas, contributing to regional groundwater circulation and water resources.

5.4 Limitations and perspectives

The physico-hydrochemical characterization conducted in this study was based on three sampling campaigns under varying
hydro-meteorological conditions. These diverse settings posed several challenges for water sampling, including issues with
accessibility, safety concerns, periods of no flow, and the need to prioritize specific areas. As a result, some sampling sites

could not be revisited during every campaign, leading to gaps in the data over time. Moreover, fluctuating weather conditions
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during a single campaign in proglacial environments likely contributed to variations in physicochemical parameters at some
sites. Where possible, multiple samples were taken at different times or on different days within the same campaign to minimize
biases caused by diurnal and meteorological variations. Consequently, some sites could not be compared across campaigns,
and their characterization can remain incomplete. On the other hand, these challenges allowed us to identify the varying
influences of different drainage systems on certain springs.

Upon initial observations and hypotheses, we adopted a unique multi-method approach, which evolved as we refined our
understanding of the system. While this combination of methods was crucial in addressing the research question and drawing
the conclusions presented, alternative approaches could have provided a more direct route to the findings. Future research
could build on the insights gained in this study by investigating the hydrological roles of other rock glaciers within the same
valley or in different regions. Such studies would help assess whether similar patterns occur across varying settings. Moreover,
this research underscores the potential role of the rock glacier and adjacent depositional features in facilitating the infiltration
of water into deep groundwater systems, as suggested by the lack of water outflow from the head of the subcatchment to the
the Shar Shaw Taga River. Characterizing these transfers is crucial for understanding the role of proglacial areas in water

resource supply during deglaciation. The authors strongly encourage further works in this direction.

6 CONCLUSIONS

The geomorphic properties of rock glaciers make them dynamic features capable of altering riverbed hydrological systems.
As assessed in this study, rock glaciers can obstruct proglacial outwash plains, thereby controlling and constraining shallow
groundwater flow. This obstruction results in channel confinement, which induces resurgences from the alluvial aquifer, with
profound impacts on both the hydrochemistry and hydrogeomorphology of alpine catchments. Rock glacier disruption leads
to substantial changes in the physicochemical parameters of streamflow, and contributes to the formation of aufeis, a
consequence not previously documented in the literature.

In contrast to initial hypotheses, the internal hydrological system of the rock glacier does not exhibit a significant influence on
downstream surface waters. Instead, the critical disruption to the riverbed hydrological system is due to the geomorphic
constraint imposed by the rock glacier on the alluvial aquifer. The water that flows from the subcatchment above the rock
glacier is suspected to infiltrate deep groundwater systems through the rock glacier and the adjacent depositional features, as
it could not be traced beyond the rock glacier.

Thus, this study emphasizes the complexity and potentially misleading nature of characterizing groundwater flow pathways in
proglacial environments. The findings also have broader implications for mountain hydrology and water resources,
highlighting the importance of rock glaciers and proglacial systems as critical hydrological features and potential hubs for
mountain-block recharge, linking the mountain cryosphere to deep groundwater systems.
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